
altgraph Documentation
Release 0.17.3

Ronald Oussoren

Sep 25, 2022

Contents

1 Release history 3

2 License 7

3 altgraph — A Python Graph Library 9

4 altgraph.Graph — Basic directional graphs 11

5 altgraph.ObjectGraph — Graphs of objecs with an identifier 15

6 altgraph.GraphAlgo — Graph algorithms 19

7 altgraph.GraphStat — Functions providing various graph statistics 21

8 altgraph.GraphUtil — Utility functions 23

9 altgraph.Dot — Interface to the dot language 25

10 Online Resources 29

11 Indices and tables 31

Python Module Index 33

Index 35

i

ii

altgraph Documentation, Release 0.17.3

altgraph is a fork of graphlib: a graph (network) package for constructing graphs, BFS and DFS traversals, topological
sort, shortest paths, etc. with graphviz output.

The primary users of this package are macholib and modulegraph.

Contents 1

http://pypi.python.org/pypi/macholib
http://pypi.python.org/pypi/modulegraph

altgraph Documentation, Release 0.17.3

2 Contents

CHAPTER 1

Release history

1.1 0.17.3

• Update classifiers for Python 3.11

1.2 0.17.2

• Change in setup.py to fix the sidebar links on PyPI

1.3 0.17.1

• Explicitly mark Python 3.10 as supported in wheel metadata.

1.4 0.17

• Explicitly mark Python 3.8 as supported in wheel metadata.

• Migrate from Bitbucket to GitHub

• Run black on the entire repository

1.5 0.16.1

• Explicitly mark Python 3.7 as supported in wheel metadata.

3

altgraph Documentation, Release 0.17.3

1.6 0.16

• Add LICENSE file

1.7 0.15

• ObjectGraph.get_edges, ObjectGraph.getEdgeData and ObjectGraph.updateEdgeData
accept None as the node to get and treat this as an alias for self (as other methods already did).

1.8 0.14

• Issue #7: Remove use of iteritems in altgraph.GraphAlgo code

1.9 0.13

• Issue #4: Graph._bfs_subgraph and back_bfs_subgraph return subgraphs with reversed edges

Fix by “pombredanne” on bitbucket.

1.10 0.12

• Added ObjectGraph.edgeData to retrieve the edge data from a specific edge.

• Added AltGraph.update_edge_data and ObjectGraph.updateEdgeData to update the data as-
sociated with a graph edge.

1.11 0.11

• Stabilize the order of elements in dot file exports, patch from bitbucket user ‘pombredanne’.

• Tweak setup.py file to remove dependency on distribute (but keep the dependency on setuptools)

1.12 0.10.2

• There where no classifiers in the package metadata due to a bug in setup.py

1.13 0.10.1

This is a bugfix release

Bug fixes:

4 Chapter 1. Release history

altgraph Documentation, Release 0.17.3

• Issue #3: The source archive contains a README.txt while the setup file refers to ReadMe.txt.

This is caused by a misfeature in distutils, as a workaround I’ve renamed ReadMe.txt to README.txt in the
source tree and setup file.

1.14 0.10

This is a minor feature release

Features:

• Do not use “2to3” to support Python 3.

As a side effect of this altgraph now supports Python 2.6 and later, and no longer supports earlier releases of
Python.

• The order of attributes in the Dot output is now always alphabetical.

With this change the output will be consistent between runs and Python versions.

1.15 0.9

This is a minor bugfix release

Features:

• Added altgraph.ObjectGraph.ObjectGraph.nodes, a method yielding all nodes in an object graph.

Bugfixes:

• The 0.8 release didn’t work with py2app when using python 3.x.

1.16 0.8

This is a minor feature release. The major new feature is a extensive set of unittests, which explains almost all other
changes in this release.

Bugfixes:

• Installing failed with Python 2.5 due to using a distutils class that isn’t available in that version of Python (issue
#1 on the issue tracker)

• altgraph.GraphStat.degree_dist now actually works

• altgraph.Graph.add_edge(a, b, create_nodes=False) will no longer create the edge when
one of the nodes doesn’t exist.

• altgraph.Graph.forw_topo_sort failed for some sparse graphs.

• altgraph.Graph.back_topo_sort was completely broken in previous releases.

• altgraph.Graph.forw_bfs_subgraph now actually works.

• altgraph.Graph.back_bfs_subgraph now actually works.

• altgraph.Graph.iterdfs now returns the correct result when the forward argument is False.

• altgraph.Graph.iterdata now returns the correct result when the forward argument is False.

1.14. 0.10 5

altgraph Documentation, Release 0.17.3

Features:

• The altgraph.Graph constructor now accepts an argument that contains 2- and 3-tuples instead of require-
ing that all items have the same size. The (optional) argument can now also be any iterator.

• altgraph.Graph.Graph.add_node has no effect when you add a hidden node.

• The private method altgraph.Graph._bfs is no longer present.

• The private method altgraph.Graph._dfs is no longer present.

• altgraph.ObjectGraph now has a __contains__ methods, which means you can use the in operator
to check if a node is part of a graph.

• altgraph.GraphUtil.generate_random_graphwill raise GraphError instead of looping forever
when it is impossible to create the requested graph.

• altgraph.Dot.edge_style raises GraphError when one of the nodes is not present in the graph. The
method silently added the tail in the past, but without ensuring a consistent graph state.

• altgraph.Dot.save_img now works when the mode is "neato".

1.17 0.7.2

This is a minor bugfix release

Bugfixes:

• distutils didn’t include the documentation subtree

1.18 0.7.1

This is a minor feature release

Features:

• Documentation is now generated using sphinx and can be viewed at <http://packages.python.org/altgraph>.

• The repository has moved to bitbucket

• altgraph.GraphStat.avg_hops is no longer present, the function had no implementation and no spec-
ified behaviour.

• the module altgraph.compat is gone, which means altgraph will no longer work with Python 2.3.

1.19 0.7.0

This is a minor feature release.

Features:

• Support for Python 3

• It is now possible to run tests using ‘python setup.py test’

(The actual testsuite is still very minimal though)

6 Chapter 1. Release history

http://pypi.python.org/pypi/sphinx
http://packages.python.org/altgraph

CHAPTER 2

License

Copyright (c) 2004 Istvan Albert unless otherwise noted.

Parts are copyright (c) Bob Ippolito

Parts are copyright (c) 2010-2014 Ronald Oussoren

2.1 MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

7

altgraph Documentation, Release 0.17.3

8 Chapter 2. License

CHAPTER 3

altgraph — A Python Graph Library

altgraph is a fork of graphlib tailored to use newer Python 2.3+ features, including additional support used by the
py2app suite (modulegraph and macholib, specifically).

altgraph is a python based graph (network) representation and manipulation package. It has started out as an extension
to the graph_lib module written by Nathan Denny it has been significantly optimized and expanded.

The altgraph.Graph.Graph class is loosely modeled after the LEDA (Library of Efficient Datatypes) repre-
sentation. The library includes methods for constructing graphs, BFS and DFS traversals, topological sort, finding
connected components, shortest paths as well as a number graph statistics functions. The library can also visualize
graphs via graphviz.

exception altgraph.GraphError
Exception raised when methods are called with bad values of an inconsistent state.

9

http://pygraphlib.sourceforge.net
http://www.ece.arizona.edu/~denny/python_nest/graph_lib_1.0.1.html
http://www.algorithmic-solutions.com/enleda.htm
http://www.research.att.com/sw/tools/graphviz/

altgraph Documentation, Release 0.17.3

10 Chapter 3. altgraph — A Python Graph Library

CHAPTER 4

altgraph.Graph — Basic directional graphs

The module altgraph.Graph provides a class Graph that represents a directed graph with N nodes and E edges.

class altgraph.Graph.Graph([edges])
Constructs a new empty Graph object. If the optional edges parameter is supplied, updates the graph by adding
the specified edges.

All of the elements in edges should be tuples with two or three elements. The first two elements of the tuple
are the source and destination node of the edge, the optional third element is the edge data. The source and
destination nodes are added to the graph when the aren’t already present.

4.1 Node related methods

Graph.add_node(node[, node_data])
Adds a new node to the graph if it is not already present. The new node must be a hashable object.

Arbitrary data can be attached to the node via the optional node_data argument.

Note: the node also won’t be added to the graph when it is present but currently hidden.

Graph.hide_node(node)
Hides a node from the graph. The incoming and outgoing edges of the node will also be hidden.

Raises altgraph.GraphError when the node is not (visible) node of the graph.

Graph.restore_node(node)
Restores a previously hidden node. The incoming and outgoing edges of the node are also restored.

Raises altgraph.GraphError when the node is not a hidden node of the graph.

Graph.restore_all_nodes()
Restores all hidden nodes.

11

altgraph Documentation, Release 0.17.3

Graph.number_of_nodes()
Return the number of visible nodes in the graph.

Graph.number_of_hidden_nodes()
Return the number of hidden nodes in the graph.

Graph.node_list()
Return a list with all visible nodes in the graph.

Graph.hidden_node_list()
Return a list with all hidden nodes in the graph.

altgraph.Graph.node_data(node)
Return the data associated with the node when it was added.

Graph.describe_node(node)
Returns node, the node’s data and the lists of outgoing and incoming edges for the node.

Note: the edge lists should not be modified, doing so can result in unpredicatable behavior.

Graph.__contains__(node)
Returns True iff node is a node in the graph. This method is accessed through the in operator.

Graph.__iter__()
Yield all nodes in the graph.

Graph.out_edges(node)
Return the list of outgoing edges for node

Graph.inc_edges(node)
Return the list of incoming edges for node

Graph.all_edges(node)
Return the list of incoming and outgoing edges for node

Graph.out_degree(node)
Return the number of outgoing edges for node.

Graph.inc_degree(node)
Return the number of incoming edges for node.

Graph.all_degree(node)
Return the number of edges (incoming or outgoing) for node.

4.2 Edge related methods

Graph.add_edge(head_id, tail_id[, edge data[, create_nodes]])
Adds a directed edge from head_id to tail_id. Arbitrary data can be added via edge_data. When create_nodes
is True (the default), head_id and tail_id will be added to the graph when the aren’t already present.

Graph.hide_edge(edge)
Hides an edge from the graph. The edge may be unhidden at some later time.

Graph.restore_edge(edge)
Restores a previously hidden edge.

Graph.restore_all_edges()
Restore all edges that were hidden before, except for edges referring to hidden nodes.

12 Chapter 4. altgraph.Graph — Basic directional graphs

altgraph Documentation, Release 0.17.3

Graph.edge_by_node(head, tail)
Return the edge ID for an edge from head to tail, or None when no such edge exists.

Graph.edge_by_id(edge)
Return the head and tail of the edge

Graph.edge_data(edge)
Return the data associated with the edge.

Graph.update_edge_data(edge, data)
Replace the edge data for edge by data. Raises KeyError when the edge does not exist.

New in version 0.12.

Graph.head(edge)
Return the head of an edge

Graph.tail(edge)
Return the tail of an edge

Graph.describe_edge(edge)
Return the edge, the associated data, its head and tail.

Graph.number_of_edges()
Return the number of visible edges.

Graph.number_of_hidden_edges()
Return the number of hidden edges.

Graph.edge_list()
Returns a list with all visible edges in the graph.

Graph.hidden_edge_list()
Returns a list with all hidden edges in the graph.

4.3 Graph traversal

Graph.out_nbrs(node)
Return a list of all nodes connected by outgoing edges.

Graph.inc_nbrs(node)
Return a list of all nodes connected by incoming edges.

Graph.all_nbrs(node)
Returns a list of nodes connected by an incoming or outgoing edge.

Graph.forw_topo_sort()
Return a list of nodes where the successors (based on outgoing edges) of any given node apear in the sequence
after that node.

Graph.back_topo_sort()
Return a list of nodes where the successors (based on incoming edges) of any given node apear in the sequence
after that node.

Graph.forw_bfs_subgraph(start_id)
Return a subgraph consisting of the breadth first reachable nodes from start_id based on their outgoing edges.

Graph.back_bfs_subgraph(start_id)
Return a subgraph consisting of the breadth first reachable nodes from start_id based on their incoming edges.

4.3. Graph traversal 13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError

altgraph Documentation, Release 0.17.3

Graph.iterdfs(start[, end[, forward]])
Yield nodes in a depth first traversal starting at the start node.

If end is specified traversal stops when reaching that node.

If forward is True (the default) edges are traversed in forward direction, otherwise they are traversed in reverse
direction.

Graph.iterdata(start[, end[, forward[, condition]]])
Yield the associated data for nodes in a depth first traversal starting at the start node. This method will not yield
values for nodes without associated data.

If end is specified traversal stops when reaching that node.

If condition is specified and the condition callable returns False for the associated data this method will not yield
the associated data and will not follow the edges for the node.

If forward is True (the default) edges are traversed in forward direction, otherwise they are traversed in reverse
direction.

Graph.forw_bfs(start[, end])
Returns a list of nodes starting at start in some bread first search order (following outgoing edges).

When end is specified iteration stops at that node.

Graph.back_bfs(start[, end])
Returns a list of nodes starting at start in some bread first search order (following incoming edges).

When end is specified iteration stops at that node.

Graph.get_hops(start[, end[, forward]])
Computes the hop distance to all nodes centered around a specified node.

First order neighbours are at hop 1, their neigbours are at hop 2 etc. Uses forw_bfs() or back_bfs()
depending on the value of the forward parameter.

If the distance between all neighbouring nodes is 1 the hop number corresponds to the shortest distance between
the nodes.

Typical usage:

>>> print graph.get_hops(1, 8)
>>> [(1, 0), (2, 1), (3, 1), (4, 2), (5, 3), (7, 4), (8, 5)]
node 1 is at 0 hops
node 2 is at 1 hop
...
node 8 is at 5 hops

4.4 Graph statistics

Graph.connected()
Returns True iff every node in the graph can be reached from every other node.

Graph.clust_coef(node)
Returns the local clustering coefficient of node.

The local cluster coefficient is the proportion of the actual number of edges between neighbours of node and the
maximum number of edges between those nodes.

14 Chapter 4. altgraph.Graph — Basic directional graphs

CHAPTER 5

altgraph.ObjectGraph — Graphs of objecs with an identifier

class altgraph.ObjectGraph.ObjectGraph([graph[, debug]])
A graph of objects that have a “graphident” attribute. The value of this attribute is the key for the object in the
graph.

The optional graph is a previously constructed Graph.

The optional debug level controls the amount of debug output (see msg(), msgin() and msgout()).

Note: the altgraph library does not generate output, the debug attribute and message methods are present for
use by subclasses.

ObjectGraph.graph
An Graph object that contains the graph data.

ObjectGraph.addNode(node)
Adds a node to the graph.

Note: re-adding a node that was previously removed using removeNode() will reinstate the previously
removed node.

ObjectGraph.createNode(self, cls, name, *args, **kwds)
Creates a new node using cls(*args, **kwds) and adds that node using addNode().

Returns the newly created node.

ObjectGraph.removeNode(node)
Removes a node from the graph when it exists. The node argument is either a node object, or the graphident of
a node.

ObjectGraph.createReferences(fromnode, tonode[, edge_data])
Creates a reference from fromnode to tonode. The optional edge_data is associated with the edge.

Fromnode and tonode can either be node objects or the graphident values for nodes. When fromnode is None
tonode is a root for the graph.

15

https://docs.python.org/3/library/constants.html#None

altgraph Documentation, Release 0.17.3

altgraph.ObjectGraph.removeReference(fromnode, tonode)
Removes the reference from fromnode to tonode if it exists.

ObjectGraph.getRawIdent(node)
Returns the graphident attribute of node, or the graph itself when node is None.

altgraph.ObjectGraph.getIdent(node)
Same as getRawIdent(), but only if the node is part of the graph.

Node can either be an actual node object or the graphident of a node.

ObjectGraph.findNode(node)
Returns a given node in the graph, or Node when it cannot be found.

Node is either an object with a graphident attribute or the graphident attribute itself.

ObjectGraph.__contains__(node)
Returns True if node is a member of the graph. Node is either an object with a graphident attribute or the
graphident attribute itself.

ObjectGraph.flatten([condition[, start]])
Yield all nodes that are entirely reachable by condition starting fromt he given start node or the graph root.

Note: objects are only reachable from the graph root when there is a reference from the root to the node (either
directly or through another node)

ObjectGraph.nodes()
Yield all nodes in the graph.

ObjectGraph.get_edges(node)
Returns two iterators that yield the nodes reaching by outgoing and incoming edges for node. Note that the
iterator for incoming edgets can yield None when the node is a root of the graph.

Use None for node to fetch the roots of the graph.

ObjectGraph.filterStack(filters)
Filter the ObjectGraph in-place by removing all edges to nodes that do not match every filter in the given filter
list

Returns a tuple containing the number of: (nodes_visited, nodes_removed, nodes_orphaned)

ObjectGraph.edgeData(fromNode, toNode):
Return the edge data associated with the edge from *fromNode*
to *toNode*. Raises :exc:`KeyError` when no such edge exists.

ObjectGraph.updateEdgeData(fromNode, toNode, edgeData)
Replace the data associated with the edge from fromNode to toNode by edgeData.

Raises KeyError when the edge does not exist.

5.1 Debug output

ObjectGraph.debug
The current debug level.

ObjectGraph.msg(level, text, *args)
Print a debug message at the current indentation level when the current debug level is level or less.

16 Chapter 5. altgraph.ObjectGraph — Graphs of objecs with an identifier

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError

altgraph Documentation, Release 0.17.3

ObjectGraph.msgin(level, text, *args)
Print a debug message when the current debug level is level or less, and increase the indentation level.

ObjectGraph.msgout(level, text, *args)
Decrease the indentation level and print a debug message when the current debug level is level or less.

5.1. Debug output 17

altgraph Documentation, Release 0.17.3

18 Chapter 5. altgraph.ObjectGraph — Graphs of objecs with an identifier

CHAPTER 6

altgraph.GraphAlgo — Graph algorithms

altgraph.GraphAlgo.dijkstra(graph, start[, end])
Dijkstra’s algorithm for shortest paths.

Find shortest paths from the start node to all nodes nearer than or equal to the end node. The edge data is
assumed to be the edge length.

Note: Dijkstra’s algorithm is only guaranteed to work correctly when all edge lengths are positive. This code
does not verify this property for all edges (only the edges examined until the end vertex is reached), but will
correctly compute shortest paths even for some graphs with negative edges, and will raise an exception if it
discovers that a negative edge has caused it to make a mistake.

altgraph.GraphAlgo.shortest_path(graph, start, end)
Find a single shortest path from the given start node to the given end node. The input has the same conventions
as dijkstra(). The output is a list of the nodes in order along the shortest path.

19

altgraph Documentation, Release 0.17.3

20 Chapter 6. altgraph.GraphAlgo — Graph algorithms

CHAPTER 7

altgraph.GraphStat — Functions providing various graph statistics

The module altgraph.GraphStat provides function that calculate graph statistics. Currently there is only one
such function, more may be added later.

altgraph.GraphStat.degree_dist(graph[, limits[, bin_num[, mode]]])
Groups the number of edges per node into bin_num bins and returns the list of those bins. Every item in the
result is a tuple with the center of the bin and the number of items in that bin.

When the limits argument is present it must be a tuple with the mininum and maximum number of edges that
get binned (that is, when limits is (4, 10) only nodes with between 4 and 10 edges get counted.

The mode argument is used to count incoming ('inc') or outgoing ('out') edges. The default is to count the
outgoing edges.

21

altgraph Documentation, Release 0.17.3

22 Chapter 7. altgraph.GraphStat — Functions providing various graph statistics

CHAPTER 8

altgraph.GraphUtil — Utility functions

The module altgraph.GraphUtil performs a number of more or less useful utility functions.

altgraph.GraphUtil.generate_random_graph(node_num, edge_num[, self_loops[,
multi_edges])

Generates and returns a Graph instance with node_num nodes randomly connected by edge_num edges.

When self_loops is present and True there can be edges that point from a node to itself.

When multi_edge is present and True there can be duplicate edges.

This method raises GraphError <altgraph.GraphError when a graph with the requested configura-
tion cannot be created.

altgraph.GraphUtil.generate_scale_free_graph(steps, growth_num[, self_loops[,
multi_edges]])

Generates and returns a Graph instance that will have steps*growth_n um nodes and a scale free (powerlaw)
connectivity.

Starting with a fully connected graph with growth_num nodes at every step growth_num nodes are added to the
graph and are connected to existing nodes with a probability proportional to the degree of these existing nodes.

Warning: The current implementation is basically untested, although code inspection seems to indicate an
implementation that is consistent with the description at Wolfram MathWorld

altgraph.GraphUtil.filter_stack(graph, head, filters)
Perform a depth-first oder walk of the graph starting at head and apply all filter functions in filters on the node
data of the nodes found.

Returns (visited, removes, orphans), where

• visited: the set of visited nodes

• removes: the list of nodes where the node data doesn’t match all filters.

23

http://mathworld.wolfram.com/Scale-FreeNetwork.html

altgraph Documentation, Release 0.17.3

• orphans: list of tuples (last_good, node), where node is not in removes and one of the nodes that is
connected by an incoming edge is in removes. Last_good is the closest upstream node that is not in
removes.

24 Chapter 8. altgraph.GraphUtil — Utility functions

CHAPTER 9

altgraph.Dot — Interface to the dot language

The Dotmodule provides a simple interface to the file format used in the graphviz program. The module is intended to
offload the most tedious part of the process (the dot file generation) while transparently exposing most of its features.

To display the graphs or to generate image files the graphviz package needs to be installed on the system, moreover
the dot and dotty programs must be accesible in the program path so that they can be ran from processes spawned
within the module.

9.1 Example usage

Here is a typical usage:

from altgraph import Graph, Dot

create a graph
edges = [(1,2), (1,3), (3,4), (3,5), (4,5), (5,4)]
graph = Graph.Graph(edges)

create a dot representation of the graph
dot = Dot.Dot(graph)

display the graph
dot.display()

save the dot representation into the mydot.dot file
dot.save_dot(file_name='mydot.dot')

save dot file as gif image into the graph.gif file
dot.save_img(file_name='graph', file_type='gif')

25

\T1\textless {}http://www.research.att.com/sw/tools/graphviz/\T1\textgreater {}{}`_
\T1\textless {}http://www.research.att.com/sw/tools/graphviz/\T1\textgreater {}{}`_

altgraph Documentation, Release 0.17.3

9.2 Directed graph and non-directed graph

Dot class can use for both directed graph and non-directed graph by passing graphtype parameter.

Example:

create directed graph(default)
dot = Dot.Dot(graph, graphtype="digraph")

create non-directed graph
dot = Dot.Dot(graph, graphtype="graph")

9.3 Customizing the output

The graph drawing process may be customized by passing valid dot parameters for the nodes and edges. For a list of
all parameters see the graphviz documentation.

Example:

customizing the way the overall graph is drawn
dot.style(size='10,10', rankdir='RL', page='5, 5' , ranksep=0.75)

customizing node drawing
dot.node_style(1, label='BASE_NODE',shape='box', color='blue')
dot.node_style(2, style='filled', fillcolor='red')

customizing edge drawing
dot.edge_style(1, 2, style='dotted')
dot.edge_style(3, 5, arrowhead='dot', label='binds', labelangle='90')
dot.edge_style(4, 5, arrowsize=2, style='bold')

.. note::

dotty (invoked via :py:func:`~altgraph.Dot.display`) may not be able to
display all graphics styles. To verify the output save it to an image
file and look at it that way.

9.4 Valid attributes

• dot styles, passed via the Dot.style() method:

rankdir = 'LR' (draws the graph horizontally, left to right)
ranksep = number (rank separation in inches)

• node attributes, passed via the Dot.node_style() method:

style = 'filled' | 'invisible' | 'diagonals' | 'rounded'
shape = 'box' | 'ellipse' | 'circle' | 'point' | 'triangle'

• edge attributes, passed via the Dot.edge_style() method:

26 Chapter 9. altgraph.Dot — Interface to the dot language

\T1\textless {}http://www.research.att.com/sw/tools/graphviz/\T1\textgreater {}{}`_

altgraph Documentation, Release 0.17.3

style = 'dashed' | 'dotted' | 'solid' | 'invis' | 'bold'
arrowhead = 'box' | 'crow' | 'diamond' | 'dot' | 'inv' | 'none' | 'tee' | 'vee'
weight = number (the larger the number the closer the nodes will be)

• valid graphviz colors

• for more details on how to control the graph drawing process see the graphviz reference.

9.5 Class interface

class altgraph.Dot.Dot(graph[, nodes[, edgefn[, nodevisitor[, edgevisitor[, name[, dot[, dotty[,
neato[, graphtype]]]]]]]]])

Creates a new Dot generator based on the specified Graph. The Dot generator won’t reference the graph once
it is constructed.

If the nodes argument is present it is the list of nodes to include in the graph, otherwise all nodes in graph are
included.

If the edgefn argument is present it is a function that yields the nodes connected to another node, this defaults
to graph.out_nbr. The constructor won’t add edges to the dot file unless both the head and tail of the edge
are in nodes.

If the name is present it specifies the name of the graph in the resulting dot file. The default is "G".

The functions nodevisitor and edgevisitor return the default style for a given edge or node (both default to
functions that return an empty style).

The arguments dot, dotty and neato are used to pass the path to the corresponding graphviz command.

9.5.1 Updating graph attributes

Dot.style(**attr)
Sets the overall style (graph attributes) to the given attributes.

See Valid Attributes for more information about the attributes.

Dot.node_style(node, **attr)
Sets the style for node to the given attributes.

This method will add node to the graph when it isn’t already present.

See Valid Attributes for more information about the attributes.

Dot.all_node_style(**attr)
Replaces the current style for all nodes

altgraph.Dot.edge_style(head, tail, **attr)
Sets the style of an edge to the given attributes. The edge will be added to the graph when it isn’t already present,
but head and tail must both be valid nodes.

See Valid Attributes for more information about the attributes.

9.5.2 Emitting output

Dot.display([mode])
Displays the current graph via dotty.

9.5. Class interface 27

http://www.research.att.com/~erg/graphviz/info/colors.html
http://www.research.att.com/sw/tools/graphviz/refs.html
\T1\textless {}http://www.research.att.com/sw/tools/graphviz/\T1\textgreater {}{}`_

altgraph Documentation, Release 0.17.3

If the mode is "neato" the dot file is processed with the neato command before displaying.

This method won’t return until the dotty command exits.

altgraph.Dot.save_dot(filename)
Saves the current graph representation into the given file.

Note: For backward compatibility reasons this method can also be called without an argument, it will then
write the graph into a fixed filename (present in the attribute Graph.temp_dot).

This feature is deprecated and should not be used.

altgraph.Dot.save_image(file_name[, file_type[, mode]])
Saves the current graph representation as an image file. The output is written into a file whose basename is
file_name and whose suffix is file_type.

The file_type specifies the type of file to write, the default is "gif".

If the mode is "neato" the dot file is processed with the neato command before displaying.

Note: For backward compatibility reasons this method can also be called without an argument, it will then
write the graph with a fixed basename ("out").

This feature is deprecated and should not be used.

altgraph.Dot.iterdot()
Yields all lines of a graphviz input file (including line endings).

altgraph.Dot.__iter__()
Alias for the iterdot() method.

28 Chapter 9. altgraph.Dot — Interface to the dot language

\T1\textless {}http://www.research.att.com/sw/tools/graphviz/\T1\textgreater {}{}`_

CHAPTER 10

Online Resources

• Sourcecode repository on GitHub

• The issue tracker

29

https://github.com/ronaldoussoren/altgraph/
https://github.com/ronaldoussoren/altgraph/issues

altgraph Documentation, Release 0.17.3

30 Chapter 10. Online Resources

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

31

altgraph Documentation, Release 0.17.3

32 Chapter 11. Indices and tables

Python Module Index

a
altgraph, 9
altgraph.Dot, 25
altgraph.Graph, 11
altgraph.GraphAlgo, 19
altgraph.GraphStat, 21
altgraph.GraphUtil, 23
altgraph.ObjectGraph, 15

33

altgraph Documentation, Release 0.17.3

34 Python Module Index

Index

Symbols
__contains__() (altgraph.Graph.Graph method),

12
__contains__() (alt-

graph.ObjectGraph.ObjectGraph method),
16

__iter__() (altgraph.Graph.Graph method), 12
__iter__() (in module altgraph.Dot), 28

A
add_edge() (altgraph.Graph.Graph method), 12
add_node() (altgraph.Graph.Graph method), 11
addNode() (altgraph.ObjectGraph.ObjectGraph

method), 15
all_degree() (altgraph.Graph.Graph method), 12
all_edges() (altgraph.Graph.Graph method), 12
all_nbrs() (altgraph.Graph.Graph method), 13
all_node_style() (altgraph.Dot.Dot method), 27
altgraph (module), 9
altgraph.Dot (module), 25
altgraph.Graph (module), 11
altgraph.GraphAlgo (module), 19
altgraph.GraphStat (module), 21
altgraph.GraphUtil (module), 23
altgraph.ObjectGraph (module), 15

B
back_bfs() (altgraph.Graph.Graph method), 14
back_bfs_subgraph() (altgraph.Graph.Graph

method), 13
back_topo_sort() (altgraph.Graph.Graph

method), 13

C
clust_coef() (altgraph.Graph.Graph method), 14
connected() (altgraph.Graph.Graph method), 14
createNode() (altgraph.ObjectGraph.ObjectGraph

method), 15

createReferences() (alt-
graph.ObjectGraph.ObjectGraph method),
15

D
degree_dist() (in module altgraph.GraphStat), 21
describe_edge() (altgraph.Graph.Graph method),

13
describe_node() (altgraph.Graph.Graph method),

12
dijkstra() (in module altgraph.GraphAlgo), 19
display() (altgraph.Dot.Dot method), 27
Dot (class in altgraph.Dot), 27

E
edge_by_id() (altgraph.Graph.Graph method), 13
edge_by_node() (altgraph.Graph.Graph method),

12
edge_data() (altgraph.Graph.Graph method), 13
edge_list() (altgraph.Graph.Graph method), 13
edge_style() (in module altgraph.Dot), 27

F
filter_stack() (in module altgraph.GraphUtil), 23
filterStack() (altgraph.ObjectGraph.ObjectGraph

method), 16
findNode() (altgraph.ObjectGraph.ObjectGraph

method), 16
flatten() (altgraph.ObjectGraph.ObjectGraph

method), 16
forw_bfs() (altgraph.Graph.Graph method), 14
forw_bfs_subgraph() (altgraph.Graph.Graph

method), 13
forw_topo_sort() (altgraph.Graph.Graph

method), 13

G
generate_random_graph() (in module alt-

graph.GraphUtil), 23

35

altgraph Documentation, Release 0.17.3

generate_scale_free_graph() (in module alt-
graph.GraphUtil), 23

get_edges() (altgraph.ObjectGraph.ObjectGraph
method), 16

get_hops() (altgraph.Graph.Graph method), 14
getIdent() (in module altgraph.ObjectGraph), 16
getRawIdent() (altgraph.ObjectGraph.ObjectGraph

method), 16
Graph (class in altgraph.Graph), 11
GraphError, 9

H
head() (altgraph.Graph.Graph method), 13
hidden_edge_list() (altgraph.Graph.Graph

method), 13
hidden_node_list() (altgraph.Graph.Graph

method), 12
hide_edge() (altgraph.Graph.Graph method), 12
hide_node() (altgraph.Graph.Graph method), 11

I
inc_degree() (altgraph.Graph.Graph method), 12
inc_edges() (altgraph.Graph.Graph method), 12
inc_nbrs() (altgraph.Graph.Graph method), 13
iterdata() (altgraph.Graph.Graph method), 14
iterdfs() (altgraph.Graph.Graph method), 13
iterdot() (in module altgraph.Dot), 28

M
msg() (altgraph.ObjectGraph.ObjectGraph method), 16
msgin() (altgraph.ObjectGraph.ObjectGraph method),

16
msgout() (altgraph.ObjectGraph.ObjectGraph

method), 17

N
node_data() (in module altgraph.Graph), 12
node_list() (altgraph.Graph.Graph method), 12
node_style() (altgraph.Dot.Dot method), 27
nodes() (altgraph.ObjectGraph.ObjectGraph method),

16
number_of_edges() (altgraph.Graph.Graph

method), 13
number_of_hidden_edges() (alt-

graph.Graph.Graph method), 13
number_of_hidden_nodes() (alt-

graph.Graph.Graph method), 12
number_of_nodes() (altgraph.Graph.Graph

method), 11

O
ObjectGraph (class in altgraph.ObjectGraph), 15
ObjectGraph.debug (in module alt-

graph.ObjectGraph), 16

ObjectGraph.graph (in module alt-
graph.ObjectGraph), 15

out_degree() (altgraph.Graph.Graph method), 12
out_edges() (altgraph.Graph.Graph method), 12
out_nbrs() (altgraph.Graph.Graph method), 13

R
removeNode() (altgraph.ObjectGraph.ObjectGraph

method), 15
removeReference() (in module alt-

graph.ObjectGraph), 16
restore_all_edges() (altgraph.Graph.Graph

method), 12
restore_all_nodes() (altgraph.Graph.Graph

method), 11
restore_edge() (altgraph.Graph.Graph method),

12
restore_node() (altgraph.Graph.Graph method),

11

S
save_dot() (in module altgraph.Dot), 28
save_image() (in module altgraph.Dot), 28
shortest_path() (in module altgraph.GraphAlgo),

19
style() (altgraph.Dot.Dot method), 27

T
tail() (altgraph.Graph.Graph method), 13

U
update_edge_data() (altgraph.Graph.Graph

method), 13
updateEdgeData() (alt-

graph.ObjectGraph.ObjectGraph method),
16

36 Index

	Release history
	License
	altgraph — A Python Graph Library
	altgraph.Graph — Basic directional graphs
	altgraph.ObjectGraph — Graphs of objecs with an identifier
	altgraph.GraphAlgo — Graph algorithms
	altgraph.GraphStat — Functions providing various graph statistics
	altgraph.GraphUtil — Utility functions
	altgraph.Dot — Interface to the dot language
	Online Resources
	Indices and tables
	Python Module Index
	Index

